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1. Introduction

The evolution of organisms within ecosystems has long been a fascinating research area, offering valuable
insights into survival strategies, adaptive behaviors, and interactions with dynamic environments. In this
project, we simulate the survival and evolution of AI-controlled organisms in a grid-based ecosystem using
reinforcement learning. By modeling the complexities of biological systems, the study explores how artificial
agent can learn and adapt to maximize their survival under changing environmental conditions.

In this project, an AI agent is designed to survive in a simulated environment containing food, predators, and
shelters, as illustrated in Figure. 1. The agent relies on reinforcement learning to optimize decision-making
processes, managing internal states such as hunger, health, and attack level while interacting with external
elements like environmental features.

Although time-constraint and experience-limit for us, our project successfully demonstrates how reinforce-
ment learning can replicate certain survival behaviors in human sense. We also discuss the importance of
RNN in the model architecture, challenges and potential improvements.

2. Literature Review

Reinforcement Learning (RL) has achieved notable success in solving sequential decision-making problems,
especially with the integration of deep learning methods [8]. However, RL still faces several challenges,
including sample inefficiency, sparse reward signals, and difficulties in adapting to dynamic environments
[2]. Evolutionary strategies (ES) have been proposed to address these limitations by using population-based
search methods to optimize policies in RL tasks [10].

Recent research has explored the combination of RL with evolutionary computation, known as Evolutionary
Reinforcement Learning (EvoRL). EvoRL techniques maintain a population of agents to improve exploration
and handle hyperparameter sensitivities more robustly [6]. Methods like novelty search and quality diversity
algorithms have been effective in sparse reward environments, encouraging agents to discover diverse and
high-performing strategies [4]. These approaches help agents overcome challenges such as deceptive rewards
and adapt to dynamic scenarios.

Co-Reyes et al. [3] introduced ecological reinforcement learning to address continuous, non-episodic inter-
actions between agents and environments. Their work highlighted the importance of dynamic and shaped
environments for learning in sparse reward settings. This aligns with our project, where the agent learns to
survive in a grid-based ecosystem with evolving food, threats, and shelters.

Liu [7] explored cooperative behaviors in multi-agent RL games, showing that agents can learn collabora-
tive strategies in competitive and shared-resource environments. Their work emphasizes the importance of
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Figure 1: Environment

interaction-based learning, which aligns with our goal of modeling adaptive behaviors in resource-constrained
ecosystems.

Morita and Hosobe [9] demonstrated how human-like behaviors could be achieved in game agents by combin-
ing Deep Q-Networks (DQN) with biologically-inspired constraints. Sun et al. [12] introduced DQN-based
intelligent decision-making in wargame environments, leveraging prior knowledge to enhance learning effi-
ciency. Sebastianelli et al. [11] applied Deep Q-Learning to the classic Snake game, highlighting the effective-
ness of RL in learning spatial navigation and food-seeking strategies. Similarly, our project involves learning
spatial survival behaviors, including movement and resource optimization, within a grid-based ecosystem.

Peng et al. [1] introduced an environment comprehension mechanism to achieve safer deep RL training,
emphasizing the role of environment awareness in agent performance. In our work, partial observability and
dynamic elements drive the agent to make informed decisions based on its limited surroundings.

Informed by these studies, our project models a dynamic survival environment where agents learn to bal-
ance internal states and external interactions. By designing a resource-constrained ecosystem with evolving
challenges, this work showcases how RL can simulate adaptive behaviors in dynamic settings.

3. Environment

3.1 Grid

The environment for this project is a grid-based survival game implemented as a custom OpenAI Gymasium,
named SurvivalGameEnv. It is designed to simulate complex survival scenarios where an agent intereacts
with food, threat, and shelters to maintain its internal states such as health, hungry, and attack power. The
environment is represented as a square grid, the size of which can be configured (default is 16 × 16). Each
cell in the grid may can belong to one of the following categories:
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• Walls (1): Impassable boundaries around the grid.

• Food (2): Can increase agent’s hunger level when consumed.

• Threats (3): Movable threats that can engage in combat with the agent( Figure. 2).

• Agent (4): The position of the agent itself.

• Caves (5): Shelters where the agent can recover health.

• Empty (0): If nothing.

Figure 2: Interaction between Agent and Threats

At each episode, food, threats, and caves are generated randomly and assigned uniform random values within
configurable ranges. Threats either move randomly or toward the agent when within their perception range.
They pose a risk to the agent by reducing its health upon contact. Caves are stationary shelters where the
agent can recover health, offering a strategic point for survival. As time progresses, the agent’s hunger level
decays, penalizing it with health loss if hunger falls below a critical threshold. When a food or threat is
consumed, a new one is generated at a random location with random value assigned, ensuring that their
total number remains constant throughout the game to provide continuous interaction source for agent. The
episode terminates when the agent’s health reaches zero or the maximum number of steps is exceeded.

3.2 Agent

The agent, positioned randomly at the start with uniform random attack value assigned at each episode,
can take one of five discrete actions in each step:

• 0: Stay in the current position.

• 1: Move up.

• 2: Move down.

• 3: Move left.

• 4: Move right.
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The agent has a limited observation range, typically a square region centered around its current position
(default is 9×9) . Within this range, the agent perceives the environment through multi-channel observations,
including one-hot encoded grid item categories (walls, agent, caves), and two other channels of normalized
food values and threat attack values. This restricted perception mimics real-world scenarios where decisions
must be made based on partial information.

3.3 Rewards

Rewards in the environment are designed to encourage survival and adaptive behavior. We initially made
a harsh reward design, mainly included negative rewards under situations where agent is not maintaining a
high health, and this resulted in an unsatisfied performance of the model. According to [5], we realized that
negative rewards can lead to premature termination of learning episodes in reinforcement learning, therefore
we re-designed the reward to ensure the positive reward is achievable through the learning process and also
rewards are more directed to desirable actions. For significant situations, such as being alive when reached
maximum step and health goes zero, rewards are comparatively higher absolute values to indicate what’s
most important in the game. In addition, relatively small amount of positive rewards are granted for staying
alive, consuming food, enter cave, and defeating threats. Conversely, reward penalties are applied for health
loss, critical hunger level, and low health level. These reward signals aim to guide the agent toward optimal
strategies for survival.

4. Model Design

Our agent is implemented using a Deep Q-Network (DQN) architecture designed to handle both spatial input
and internal agent states. The model processes the grid-based environment through two convolutional layers
(CNN), concatenating the output with the agent’s internal state (health, hunger, attack), and optionally
incorporates temporal information using a recurrent neural network (RNN) implemented by Long Short-Term
Memory, and finally feed into fully connected layers, as illustrated in Figure. 3

4.1 Input Representation

The input to the model consists of two main components. First, the spatial input is represented as a
multi-channel grid where each channel encodes specific environmental information. These include one-hot
encodings for walls, the agent’s position, and caves. Additional channels are values for food energy and threat
attack levels are normalized. Together, these channels form a tensor with dimensions (batch size, 5, k, k),
where k is the size of the observation scope of the agent.

After convolution, the agent’s internal states, including health, hunger, and attack level, are provided as a
separate feature vector concatenated with the output of the conv layers. Each value is normalized to ensure
consistent scaling.

4.2 Convolutional Layers and Feature Fusion

The grid input is passed through two convolutional layers to extract spatial features. The first convolutional
layer applies 16 filters with a kernel size of 3×3 and a padding of 1, followed by a ReLU activation function.
The second convolutional layer further refines these features using 32 filters with the same kernel size and
activation function.

To incorporate the agent’s internal state, the flattened spatial features are concatenated with the normal-
ized internal state vector. This step ensures that the model considers both the external environmental
observations and the agent’s internal dynamics for decision-making.

4



Figure 3: Model Structure

4.3 Temporal Feature Handling

Inspired by [13], the concatenated features can optionally pass through a Long Short-Term Memory (LSTM)
layer for agent to capture temporal dependencies in its observations and actions. This recurrent layer allows
the model to utilize historical context, which is particularly useful in dynamic environments where decisions
depend on prior states. Note that this step is optional and we will analyze its importance in the result
section.

4.4 Fully Connected Layers

The output from the LSTM, or directly from the concatenated features, is fed into a series of fully connected
layers. These layers consist of linear transformations, followed by ReLU activation functions, normalization
layer, and dropout layer to improve generalization and prevent overfitting.

The final output layer maps the refined features to Q-values corresponding to each action in the agent’s action
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space. During training, the agent selects actions using an epsilon-greedy strategy to balance exploration and
exploitation. The value of ϵ decays exponentially over time, starting from 1.0 and approaching a lower bound
of 0.05. During inference, the agent selects the action with the highest Q-value to maximize its expected
reward.

5. Reinforcement Learning

The training process of our reinforcement learning agent follows the Deep Q-Network (DQN) paradigm,
which combines Q-learning with neural networks and experience replay. The overall structure involves the
policy network, the target network, a replay buffer, and the interaction between the agent and the
environment.

The policy network is the core decision-making module. It approximates the Q-value function, which
maps the current state of the agent to Q-values for each possible action. The Q-values represent the agent’s
expected cumulative reward for taking a particular action in the given state, followed by an optimal policy.
During training, the policy network selects actions using an ϵ-greedy strategy, balancing exploration and
exploitation. Initially, the agent explores more frequently to collect diverse experiences, and over time, ϵ
decays, encouraging the agent to exploit learned policies.

The agent interacts with the environment to gather experience. At each step, the agent observes the
current state, selects an action, and receives the next state, reward, and a termination signal. This interaction
generates transitions of the form (state, action, reward, next state, done), which are stored in the replay
buffer. The replay buffer serves as a memory bank that allows the agent to sample experiences randomly
during training. This approach reduces the temporal correlation between consecutive experiences, stabilizing
the training process.

To ensure stable learning, the DQN framework employs a target network alongside the policy network. The
target network is identical to the policy network but is updated less frequently, often by copying the weights
of the policy network at fixed intervals. This separation between the networks helps prevent instability
caused by rapidly changing target Q-values during training.

During training, the agent samples mini-batches of transitions from the replay buffer. For each transition,
the Q-value loss is MSE loss calculated based on the Bellman equation:

Loss = E

[(
Q(s, a)−

(
r + γmax

a′
Qtarget(s

′, a′)
))2

]
where Q(s, a) is the predicted Q-value from the policy network, r is the immediate reward, Qtarget(s

′, a′) is
the Q-value estimate from the target network for the next state, and γ is the discount factor. The gradients
of the loss are backpropagated through the policy network to update its weights. Gradient clipping is applied
to ensure numerical stability during optimization.

The training process is illustrated in Figure 4. The policy network selects actions based on the current state,
while the environment generates rewards and transitions. These transitions are stored in the replay buffer,
which is later sampled to compute the loss. The policy network uses this loss to adjust its parameters, and
the target network periodically synchronizes its weights with the updated policy network.

The training continues for a configurable number of episodes. During evaluation, the agent’s performance is
measured using average rewards, episode lengths, and comparisons to baseline agents, such as random agents
or earlier versions of the model. By incorporating experience replay, a target network, and a structured loss
function, the reinforcement learning framework ensures a stable and efficient learning process, enabling the
agent to adapt to dynamic and partially observable environments.

6. Results and Analysis

We analyze the results of the training and evaluation of our reinforcement learning agent under two con-
figurations: with and without temporal features (RNN). The performance metrics include training rewards,
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Figure 4: Training Process

evaluation rewards, agent health, and training loss. We also compare the model with some novel approaches,
like random decisions. These results allow us to analyze the strengths and limitations of each model config-
uration.

6.1 Training and Evaluation Rewards

Figure 5 and Figure 6 compares the reward of DQN agent compared to baseline agent (DQN at episode max
episode // 10 ) and a random action selector, using two different configs. Comparing two plots, trained DQN
with RNN shows more reward peaks than trained DQN without RNN, and the trained agent using RNN
comparatively has in general higher imrpoved values of reward in comparison to the baseline and random
agents, indicating the agent’s improved ability to generalize and adapt to the environment by leveraging
temporal dependencies. This suggests that incorporating an RNN allows the agent to utilize historical
observations, leading to better decision-making in dynamic scenarios.

Figure 5: Reward Comparison, without RNN Figure 6: Reward Comparison, with RNN

6.2 Agent Health and Training Loss

With an extremely large maximum time step per episode, the agent’s health at the end of each episode is
expected to remain relatively static during training. This setup allows the agent to explore both simple and
challenging survival scenarios effectively.

The training loss curves further highlight the differences in convergence between the two configurations.
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Without the RNN (Figure 7), the loss decreases initially but plateaus early, reflecting suboptimal policy
learning. However, in the RNN setup (Figure 8), the loss decreases more gradually and stabilizes at a much
lower value, suggesting that the model continues to improve over time by learning meaningful temporal
patterns in the data.

Note that the plots for the agent health when episode ends continuously shows zero, which we suspect as
some bugs in the source code, because in the training rewards there are some high values indicating strong
reward granted, which can be possible that the agent gets those reward values through living till the end.

Figure 7: Training Progress without RNN Figure 8: Training Progress with RNN

6.3 Action Distribution Comparison

Figure 9 10 compares the conditional action distributions of three agents: a trained agent, a baseline
agent, and a random agent in the DQN without RNN configuration. The comparison reveals some insightful
differences in decision-making behaviors among the agents.

In comparison with baseline and random agents, the trained agent exhibits a stronger preference for move-
ment actions, accounting for over 94% of its total actions in without rnn setting, while the number of ”Stay”
actions is minimal. This behavior indicates that the trained agent actively explores the environment rather
than remaining idle. Furthermore, the trained agent demonstrates strategic interactions with environmental
elements. It equally treats food no matter if hunger is relatively high or low. In combat scenarios, the
agent prefers fighting weaker threats while avoiding stronger ones, showing a risk-averse strategy to preserve
health. Similarly, the agent enters caves more frequently when its health drops below a critical threshold
(Health < 100), indicating adaptive behavior aimed at health recovery, compared with baseline and random
one.

Comparing without RNN and with RNN configs, the latter shows a stronger tendency of fighting with
weaker threats and entering caves when health low. It is interesting to note that agent using RNN enters
caves significatly more times than the agent without RNN. This aligns with our hypothesis that agent using
RNN can strengthen the ”memory” of helpful information: because locations of caves do not change through
one episode, the agent might memorize the locations of caves and would love to enter more times to live
longer. The actions of eating food and threats, in comparison, showed less in RNN model, probably because
locations of food and threat changes every timestep, and thus the weak temporal information makes RNN
model has less tendency to perform actions of eating food and fighting with threats.
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Figure 9: Action Distribution, without RNN

Figure 10: Action Distribution, with RNN

7. Challenges

During the implementation and training of our reinforcement learning agent, we encountered several chal-
lenges that impacted the overall design and performance of the system.

One significant challenge was the high flexibility, represented by large number of hyperparameters tunable
involved in the training process. The model architecture, including convolutional layers, optional LSTM
configurations, fully connected layers, and training configs, such as learning rate, discount factor, target
network update frequency, gamma, epsilon, replay buffer size, are all configurable and requires careful fine-
tuning for a desirable outcome. Each of these hyperparameters plays a critical role in the stability and
efficiency of training, but the vast hyperparameter space made it difficult to identify optimal configurations
within the limited training time available.

Another challenge was the design of the reward function and game environment settings. Reward
shaping is crucial for guiding the agent toward learning effective strategies. However, balancing the rewards
for food consumption, avoiding threats, and maintaining health proved to be non-trivial. Poorly designed
rewards often led to unintended behaviors, such as the agent prioritizing short-term gains while ignoring
long-term survival objectives. Additionally, the complexity of the environment, including dynamic food
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and threat placements and their values, made it difficult to establish a reward structure that appropriately
reflects the agent’s performance.

Finally, due to time constraints, we were unable to implement a multi-agent system, which could have
further enhanced the complexity and realism of the environment. Multi-agent interactions, such as coopera-
tion or competition, are critical in many real-world scenarios and could provide additional challenges for the
learning process. However, implementing such systems requires significant modifications to the environment
and the training framework, which were beyond the scope of this project.

8. Conclusion

In this project, we implemented a reinforcement learning agent capable of survival and decision-making in
a grid-based simulated ecosystem. By leveraging a Deep Q-Network (DQN) architecture with CNN and
RNN, we demonstrated the agent’s ability to interact with environmental elements, such as food, threats,
and shelters, while managing internal states like health, hunger, and attack levels. The results highlight
the importance of incorporating temporal features using RNNs, which improved performance and stability.
Despite challenges related to hyperparameter optimization, reward function design, and the absence of a
multi-agent system, the project illustrates the potential of reinforcement learning for modeling adaptive
and survival-based behaviors in dynamic environments. Future work will explore multi-agent interactions,
advanced reward shaping, and further optimization of the agent’s learning process to enhance overall per-
formance and realism.

9. Appendix

A. Supplementary Figures

Figure. 6 shows the reward distribution of DQN-RNN model compared to baseline and random agents.
Figure. 12 shows the Q-value difference between DQN-RNN model and the baseline agent. Figure. 13 shows
the location heatmap of the DQN-RNN model.

Figure 11: Reward Distribution of RNN Model Comparison
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Figure 12: Q Value Difference between DQN Agent and Baseline Agent using RNN

B. Experiment Details

Table. 1 shows the configurations of the two model used in this report, and Table. 2 is the corresponding
evaluation results. Note that the two configs has many differences, and we admit that due to time restriction
we were unable to perform more rigorous ablation studies.

Table 1: Configurations of Models Used in This Report

Parameter Without RNN With RNN

Memory Size 500000 100000
Gamma 0.99 0.95
Learning Rate 0.0001 0.00001
Hidden Sizes [256, 128] [1024, 512, 256]
RNN Hidden Size None 512
Sequence Length None 4

Table 2: Evaluation Results

Evaluation Without RNN With RNN

Mean Reward (Agent) 1.0045 4.1165
Std Reward (Agent) 20.4479 22.1909
Mean Reward (Baseline) 0.4952 1.3875
Std Reward (Baseline) 14.3062 16.1039
Mean Q Diff (Baseline) 11.6392 2.5388
Std Q Diff (Baseline) 3.4646 0.3239
Mean Reward (Random) 2.7778 -0.6223
Std Reward (Random) 15.5099 14.0762

C. References and Codebases

During the development of our project, we referred to previous research, and open-source codebases. These
references provided theoretical foundations, implementation guidance, and early-stage inspirations.
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Figure 13: State Heatmap of RNN Agent
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C.2 Codebases

The following open-source codebases served as references for environment customization and early-stage
reinforcement learning implementations:

1. OpenAI Gym: https://gymnasium.farama.org/

2. Use RL to Play Snake Game: https://github.com/patrickloeber/snake-ai-pytorch

3. RL in Maze Game: https://github.com/erikdelange/Reinforcement-Learning-Maze

D. Timeline

Nov. 11 Topic choose, revised proposal, system design
Nov. 20 Infrastructure design
Nov. 27 Infrastructure constructed
Dec. 7 Necessary features add
Dec. 10 Fine-tuning and bug fixed
Dec. 15 Code clean-up

E. Contributions

Anni Architecture design and employment, Experiment
Zeli Model design and employment, Experiment

F. Appendix: Project Links

The following is the GitHub repository. https://github.com/AnniLi1212/EE641 Learning to Survive.git

G. Project Dependencies

The following dependencies were used in this project, as specified in the requirement.txt file:

• numpy (>=1.21.0)
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• torch (>=2.0.0)

• gymnasium (>=0.29.0)

• pygame (>=2.5.0)

• matplotlib (>=3.7.0)

• seaborn (>=0.12.0)

• opencv-python (>=4.8.0)

• pandas (>=2.0.0)

• pyyaml (>=6.0.0)

• tqdm (>=4.65.0)

• pillow (>=9.5.0)

• tensorboard (>=2.12.0)
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