Evaluation of Custom DCGAN model on CIFAR10 and Monet datasets

Anni Li
ab5li@ucsd.edu

Abstract

With the development of deep learning in
recent years, image generation has become
one of the most popular topics. The primary
goal of our project is to construct a DCGAN
(Deep Convolutional Generative Adversarial
Network) for image generation and compare
the performance of our model on two distinc-
tive datasets (Monet Paintings and CIFAR10).
Throughout our experiments, we evaluated the
performance of our DCGAN model based on
various metrics, including the visual inception
of the image quality and the inception score
method. We found that our custom DCGAN
model performed better on the Monet dataset
compared to the CIFAR10 deer dataset. With
the same amount of training data, the model
was able to produce higher-quality Monet-style
images compared to the deer images. The result
was interesting, as it revealed the potential chal-
lenges we could encounter during training and
the potential of DCGAN models for generating
vivid images.

1 Literature Review

Generative Adversarial Networks (GANs) were
first introduced in the paper "Generative Adver-
sarial Nets" by Ian J. Goodfellow et al. A GAN
consists of two models: a generative model G that
generates objects of interest, and a discriminative
model D that estimates the probability of a data
sample to be real rather than generated. The train-
ing procedure for G is to maximize the probabil-
ity of fooling D, so in this adversarial procedure,
the quality of generated data can be gradually im-
proved [1]. The image-generation ability of GANs
was proved to be further improved in the paper
"Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks"
(Radford et al, 2015). The authors introduced the
DCGAN (Deep Convolutional Generative Adver-
sarial Networks), a promising model that can ef-
fectively generate images by applying Convolu-

Ruoxuan Li
ruli@ucsd.edu

tional Neural Networks (CNN) layers in the GAN.
They also proposed several effective measures to
improve the quality of the generated images by
generative adversarial models. There are three ma-
jor changes in the paper, including replacing the
pooling functions with strided convolutions, elimi-
nating fully-connected hidden layers for deeper ar-
chitectures, and using batch normalization in both
the generator and the discriminator [2]. Besides
the significant changes, they also suggested using
LeakyReLU activation for all layers in the discrim-
inator and using Tanh activation in the output layer
of the generator. The paper provided valuable in-
sights for us to build our model. In comparison
to traditional GAN in image generation tasks, DC-
GAN is more stable in training and can also learn
a hierarchy of features from the images (Radford
et al, 2015). For the evaluation of images gener-
ated by our GAN, we referred to the method in-
troduced in the paper "Improved Techniques for
Training GANs" by Salimans et al [3]. The paper
demonstrated that the inception model [4] could be
applied to generated images to get the conditional
label distribution p(ylx), and the author suggested
that images that contain meaningful objects should
have a conditional label distribution p(ylx) with low
entropy. The author proved that the Inception score
correlates well with their subjective judgment of
image quality, and collapsed models would have
relatively low scores (Salimans et al, 2016). There-
fore, by using human recognition and the incep-
tion score, we are able to evaluate and compare
our model’s performance on the two datasets more
comprehensively.

2 Dataset

In our project, we mainly used two sepa-
rate datasets for training. The first dataset is
the "Claude Monet pictorial works dataset"
[https://iwww.kaggle.com/datasets/varnez/claude-
monet-pictorial-works-dataset-


https://www.kaggle.com/datasets/varnez/claude-monet-pictorial-works-dataset-wikiart?resource=download
https://www.kaggle.com/datasets/varnez/claude-monet-pictorial-works-dataset-wikiart?resource=download

Figure 1: Sample images from the Monet dataset

wikiart?resource=download]. The dataset
included all Claude Monet’s pictorial works
with a normalized size of 256x256. This dataset
contained 1369 images. To process the data
and speed up our training process, we defined a
transformer to resize the images to size 64x64 and
normalize the pixel values. A sample set of images

from the Monet data are shown below in Figure 1.

The second dataset is the CIFAR-10 dataset
[https:/twww.cs.toronto.edu/ kriz/cifar.html], which
consists of 60,000 32x32 color images, with
50,000 images in the training dataset and 10,000 in
the testing dataset. For our project purposes, we
only selected a subset of the training data that all
fit into the “deer” class. We used two approaches
to select the data from the CIFAR-10 deer class
for training the model. For option 1, we randomly
selected 1369 images (same amount of Monet
Dataset) from all the deer images and fed them into
the model in order to compare the performance on
the two datasets more equally. For option 2, we
fed all the 5,000 deer images into the model for
training in order to get a better result if option 1
does not lead to good outputs. Just like how we
processed the Monet dataset, we also rescaled the
images to size 64x64 and normalized the pixel
values. A sample set of images from the deer data
are shown below in Figure 2.

0 20 4 600 20 4 600 20 4 600 20 4 600 20 40 600 20 40 60

Figure 2: Sample images from the deer dataset

3 Methods

3.1 Model Construction

3.1.1 Discriminator

We referred to Zhong et al, 2023 [5] to construct
our DCGAN model, but made some changes in the
number of layers of our model. Our discrimina-
tor contains 5 convolutional layers. For the first
convolutional layer, we define it to take in 64x64 3-
channel RGB images inputs and output 64 channels
with a 4x4 kernel with a stride of 2 and a padding
of 1 on the images. Then we call the LeakyReLLU
activation function with an alpha value of 0.2. After
the activation function, we define another convolu-
tional layer using a 4x4 kernel with the same strid-
ing and padding and output 128 channels. We then
perform batch normalization on the output chan-
nels and called our LeakyReL U activation function
again. For our third convolutional layer, we con-
struct it with the same kernel size and the same
stride and padding setting as the previous convo-
lutional layers and outputs 256 channels. After
the layer, we perform batch normalization on the
output and activate our LeakyReLU function. We
keep passing the outputs into the next convolutional
layer, which is constructed in a similar manner as
the previous layers and outputs 512 channels. Af-
ter performing batch normalization and calling the
LeakyReLU activation function on the output chan-
nels, we perform the last convolution operation
which has a 4x4 kernel with a stride of 1 and O
padding and outputs 1 channel. Then, we flatten


https://www.kaggle.com/datasets/varnez/claude-monet-pictorial-works-dataset-wikiart?resource=download
https://www.cs.toronto.edu/~kriz/cifar.html

the channels and call our Sigmoid activation func-
tion. The detail of the discriminator model can be
found in Figure 3.

3.1.2 Generator

Our generator consists of 5 transposed convolu-
tional layers, upscaling a small section of the image
from a latent space to the desired 64x64 generated
image outputs. The generator mirrors a similar
structure to the construction of the discriminator
model. We define the latent space to contain 128
points. Our first transposed convolutional layer
takes in the latent space and performs an upscaling
of kernel size 4 with a stride of 1 and 0 padding,
outputting 512 channels. Then batch normaliza-
tion is performed on the outputted channels and the
ReLU activation function is called. After the acti-
vation function, the channels are fed into the next
transposed convolutional layer. In this layer, a 4x4
kernel with a stride of 2 and padding of 1 is used
to perform the transposed convolution operation
and outputs 256 channels. As in the previous layer,
batch normalization and ReL.U activation functions
are performed again. In the next transposed convo-
lutional layers, a 4x4 kernel with a stride of 2 and a
padding of 1 is called on the input channels and out-
puts 128 channels, following batch normalization
and ReLU activation function. The next transposed
convolutional layer is constructed in a similar man-
ner with 64 output channels, followed by batch
normalization and ReLU activation function. In the
last layer, a transposed convolutional layer with the
same set of kernel parameters outputs 3 channels.
Lastly, the Tanh activation function is called and
the desired images are returned. The detail of the
discriminator model can be found in Figure 4. The
complete model structure is shown in Figure 5.

3.2 Training

In our training, we labeled the real image sam-
ples from the datasets with 1 and the gener-
ated images with 0. We defined the batch
size to be 32 and the number of epochs to be
200. We used Binary Cross Entropy (BCE) as
the loss function, noise_dim=128 for the gen-
erator, and used Adam as the optimizer for
both G and D in our training. The hyper-
parameters we chose to tune are the learning rates
and beta_l. For the Monet dataset, we tried
{1r=0.0002 betal=0.5}, {Ir=0.0004 betal=0.5}, and
{Ir=0.0002 betal=0.8}. By human recognition and
inception score, it turned out that the combination

Layer (type) Output Shape Param #

Conv2d-1 [-1, 64, 32, 32) 3,072

LeakyReLU-2 [-1, 64, 32, 32] 0
Conv2d-3 (-1, 128, 16, 16] 131,072
BatchNorm2d-4 [-1, 128, 16, 16] 256
LeakyReLU-5 [-1, 128, 16, 16] 0
Conv2d-6 (-1, 256, 8, 8] 524,288
BatchNorm2d-7 [-1, 256, 8, 8] 512
LeakyReLU-8 [-1, 256, 8, 8] 0
Conv2d-9 [-1, 512, 4, 4] 2,097,152
BatchNorm2d-10 (-1, 512, 4, 4] 1,024
LeakyReLU-11 (-1, 512, 4, 4] 0
Conv2d-12 -1, 1, 1, 1) 8,192
Flatten-13 -1, 1] [}
Sigmoid-14 -1, 1] 0

Total params: 2,765,568
Trainable params: 2,765,568
Non-trainable params: 0

Input size (MB): 0.05
Forward/backward pass size (MB): 2.31
Params size (MB): 10.55

Estimated Total Size (MB): 12.91

Figure 3: Composition of the discriminator model

Layer (type) Output Shape Param #
ConvTranspose2d-1 (-1, 512, 4, 4) 1,048,576
BatchNorm2d-2 [-1, 512, 4, 4] 1,024
ReLU-3 [-1, 512, 4, 4] 0
ConvTranspose2d-4 [-1, 256, 8, 8] 2,097,152
BatchNorm2d-5 [-1, 256, 8, 8] 512
ReLU-6 [-1, 256, 8, 8] 0
ConvTranspose2d-7 [-1, 128, 16, 16] 524,288
BatchNorm2d-8 [-1, 128, 16, 16] 256
ReLU-9 (-1, 128, 16, 16] 0
ConvTranspose2d-10 (-1, 64, 32, 32) 131,072
BatchNorm2d-11 [-1, 64, 32, 32] 128
ReLU-12 [-1, 64, 32, 32] 0
ConvTranspose2d-13 (-1, 3, 64, 64) 3,072
Tanh-14 [-1, 3, 64, 64) 0

Total params: 3,806,080
Trainable params: 3,806,080
Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 3.00
Params size (MB): 14.52

Estimated Total Size (MB): 17.52

Figure 4: Composition of the generator model

of params Ir=0.0002 betal=0.5 worked better for
the Monet Dataset. The best-generated batch of
images by our model is shown below in Figure 6
and the training loss curve is shown in Figure 7.
For training parameters {Ir=0.0002, betal=0.8} on
the Monet dataset, however, the corruption of the
final general image quality as shown in Figure 8
18 observed. For the CIFAR-10 deer dataset, we
initially used {I1r=0.0002, betal=0.5} for training
on the selected 1,369 images and we experienced
model corruption as shown in Figure 9. During the
fine-tuning phase, we fed all the deer images (5000)
into our model and tested both different betal and
Ir combinations including {1r=0.0002, betal=0.5},
{Ir=0.0002, betal=0.8}, {Ir=0.0004, betal=0.8},
{Ir=0.0001, beta=0.6} and achieved the best im-
age quality with 1r=0.0004 and betal=0.8 as shown
in Figure 10. The training loss curve is shown in
Figure 11.



Fig. 2. Structures of the generator and discriminator in DCGAN.

Figure 5: The structure of the DCGAN model for our
reference.

3.3 Evaluation Metrics

In addition to human recognition, We used the in-
ception score to evaluate the effectiveness of our
models on the two datasets and compare the per-
formances [3]. The inception score algorithm we
used is to compute the entropy of the probabili-
ties evaluated by the VGG16 model on our gener-
ated images. We imported the pre-trained image-
recognition model VGG16 and split all generated
images into 10 images a group and calculated the
means and standard deviations for the inception
score among all the groups. For the pre-trained
model of our choice, the lowest inception score we
can achieve is 1.0, and the highest possible incep-
tion score we could achieve is 1000. However, it
is important to notice that the model used in the
original paper to calculate the inception score is
InceptionV3 pre-trained on the ImageNet Dataset.
InceptionV3 requires the input image size to be
299x299, which is much higher than our generated
image size, and resizing our image from 64x64 to
299x299 would cause a low score that lacks the
value of reference. Therefore, we changed the eval-
uation model to VGG16, which accepts input sizes
as low as 32x32. This change caused our final in-
ception scores not comparable to the original paper,
but could only be used to compare the performance
of our single model on different datasets.

4 Results

The 200-epoch training using our model is com-
parably fast and can be finished in approximately
12 minutes, and the generated images look similar,
at least have the same style, as the images in the
original dataset by human evaluation. By calculat-
ing the inception scores of the generated images
from the two datasets, we evaluated our model’s
performance more quantitatively and reliably. The
best inception score of the generated Monet im-

Figure 6: Best generated Monet image batch after train-
ing with 1r=0.0002 and betal=0.5.

Training Loss

0 2000 4000 6000 8000
iterations

Figure 7: The training loss curve of the best quality
training parameters for the Monet dataset

age batch is 346.23 & 1.22, and the best inception
score of the generated CIFAR10 deer image batch
is 254.06 £ 1.23. As a higher inception score in-
dicates a better-generated image quality, this re-
sult indicates that our model performs better on
the Monet dataset compared to the CIFAR10 deer
dataset. Meanwhile, we observed model corruption
in both datasets during the fine-tuning phase, which
corresponds to the observation in the original paper
that models trained longer sometimes collapse a
subset of filters to a single oscillating mode [2].

In addition, it is interesting to notice that the
model performed better on the Monet dataset even
using a smaller training set than on the CIFAR-10
dataset. It could probably be because the quality of
the original images in the Monet dataset is better,
or because of the nature of these two distinctive
image domains. Monet’s impressionism artworks
are inherently more abstract in their visual repre-
sentation, thereby having a greater tolerance for



8 8 B o8 8 B o8 8 B o8 8 ¥ o8 & ¥ o8 8

Figure 8: The generated corrupted images after training
with 1r=0.0004 and betal=0.8 on the Monet dataset.

Figure 9: The final generated deer image batch after
training with 1r=0.0002 and betal=0.5 on 1,139 images
only. As shown in the figure, the generated images are
corrupted.

variations and abstractions in generated images. In
contrast, images of deer are of real-world objects,
which are realistic and strict in detail. As a result,
it is harder for our DCGAN model to generate deer
images that meet these stringent standards, leading
to a comparatively lower Inception Score.

5 Limitation

We must acknowledge that due to the hardware con-
straints, we were not able to train the model on a
larger dataset using more epochs and higher-quality
images. Additionally, fine-tuning a DCGAN model
often requires extensive computational power to op-
timize various hyper-parameters. Thus, we were

Figure 10: Best generated deer image batch after train-
ing with 1r=0.0004 and betal=0.8.

Training Loss

Loss.

B

ikt s VAMIW“

10000 15000 20000 25000 30000
iterations

Figure 11: The training loss curve of the best quality
training parameters for the deer dataset.

not able to fine-tune the model more thoroughly
due to the limited resources and time. Despite
these limitations, we believe that our project still
provides valuable insights into the performance
of DCGAN models on the Monet and CIFAR10
datasets. While our hardware constraints restricted
the extent of fine-tuning, our findings offer a foun-
dational understanding of the capabilities and po-
tential of DCGAN models in generating visually
appealing images.

6 Conclusion

In our project, we constructed, trained, and tuned
a DCGAN model for image generation on two
datasets, a Monet painting dataset and the CIFAR-
10 dataset, and we used the inception score to eval-
uate the performance of our DCGAN. Based on
the result of our experiment, we can safely con-
clude that our model performs better on the Monet
dataset compared to the CIFAR10 dataset. We ob-
served that with the same number of images and
a same number of epochs, CIFAR10 dataset per-



formed worse compared to the Monet dataset, with
the model corrupted at a certain point of training.
Several possible causes could explain the differ-
ence in the performances of the model. First, it
could be that when we preprocessed the images,
the images from the Monet data size were shrunken
to a smaller size of 64x64 from 256x256 while the
images from the CIFAR10 dataset were enlarged
from 32x32 to 64x64. When we enlarged the size
of the CIFARI10 dataset, the images inevitably be-
came blurry and had fewer details compared to
the original images and to the images in the down-
sized Monet dataset. This could potentially bring
unnecessary noise while training the model. An-
other possible explanation for this difference could
be that the "deer" class from the CIFAR10 dataset
contains more complexity compared to the Monet
dataset. The unique features of the Monet dataset
mainly lie in the color arrangements, while the deer
images in CIFAR10 contain more diverse angles
and shapes, possibly causing more challenges for
the model to learn the pattern.

7 Contribution

Both authors actively collaborated and communi-
cated throughout the project, including discussing
project outlines, searching for paper references,
understanding the model, debugging codes, and
writing the report paper.

Anni Li: Construction of the model, data process-
ing and training on Monet Dataset

Ruoxuan Li: Data processing and training on
CIFAR-10 Dataset, Evaluation of the model, In-
ception Score insertion

References

[1] Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative Adversarial Nets. In
Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2
(NIPS’14), 2672-2680.

[2] Radford, A., Metz, L., & Chintala, S. (2015).
Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks.
https://arxiv.org/abs/1511.06434

[3] Salimans, T., Goodfellow, 1., Zaremba, W., Che-
ung, V., Radford, A., & Chen, X. (2016). Im-
proved techniques for training GANs. In Neu-
ral Information Processing Systems (Vol. 29,
pp. 2234-2242). http://papers.nips.cc/paper/6125-
improved-techniques-for-training-gans.pdf

[4] Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. arXiv
preprint arXiv:1512.00567, 2015.

[5] Zhong, H., Fernando, T., Trinh, H., Lv, Y,
Yuan, R., & Wang, Y. (2023). Fine-tuning trans-
fer learning based on DCGAN integrated with
self-attention and spectral normalization for bear-
ing fault diagnosis. Measurement, 210, 112421.
https://doi.org/10.1016/j.measurement.2022.112421



