
Comparing Three Models’ Performances on Fine-grained Classification

Anni Li
a5li@ucsd.edu

Ruoxuan Li
ruli@ucsd.edu

Abstract

Our project aims to compare the performances
of three deep-learning models on a fine-grained
classification task of classifying 200 bird
species images using the CUB-200-2011
dataset. The three models include two
convolutional neural networks (CNN) on both
full and masked images (with the background
removed) and one pre-trained ResNet50
model [1]. However, due to the heavy GPU
requirements of the model, with one epoch
taking 10 minutes to run on a 3070 Ti GPU,
the training and tuning are difficult for us,
so the results did not meet our expected
level of accuracy. Additionally, even though
the ResNet50 model required significant
computational resources, we estimated that
the model was the most effective among the
three as we were able to observe a steady
reduction in the loss function with each epoch,
indicating that the model has the potential for
improved accuracy with additional training
time. Future work in this area could involve
exploring different ways to optimize the GPU
requirements for bird classifiers or exploring
alternative models that can deliver comparable
accuracy with fewer computational resources.
In summary, by comparing these three models,
we found that the traditional CNNs with simple
structures could not perform fine-grained
classification well, because their ability to
effectively extract important features is limited.
The ResNet-50 model, both because it was
pre-trained on a larger dataset (ImageNet)
and it has a more complicated structure, can
finish this task much better than traditional
CNNs. Our code for this project is publicly
available on Github: https://github.
com/AnniLi1212/Fine_Grained_
Bird_Classification.git

1 Introduction

1.1 Motivation
Bird classification has always been an interesting
and challenging task in the scientific field. Dif-

ferent species of birds play various essential roles
in an ecosystem and are significantly important
for wildlife conservation. The categorization of
birds strengthens our understanding of the species
and improves the efficiency of the reservation pro-
grams. In the past, biologists had to manually la-
bel the birds by comparing the field guide and the
images of the birds, which could be exhausting
and time-consuming. Nowadays, with the devel-
opment of artificial intelligence and computer vi-
sion, we become able to perform complex bird-
classification tasks with the help of deep learning
models. While there are many types of bird classifi-
cation tasks with different input features such as the
birds’ soundtrack, text descriptions, and photos of
birds, in our project, we are particularly interested
in classifying the birds using images as we expect
this task will contribute positively to the conserva-
tion of wildlife and the environment. Besides that,
one of the authors enjoys bird-watching and quite
often relies on bird-classification applications such
as Merlin Bird ID for effective categorization of a
bird image shot. Thus, we determined to perform
an experiment in which we compared the perfor-
mance of different models on CUB-200-2011 [2], a
dataset that consists of over 10,000 images of 200
species of birds.

The task of classifying birds using images is a
type of fine-grained classification. By definition,
fine-grained classification is a sub-field of object
recognition that aims to distinguish subordinate
categories within every entry-level category. We
hope by training and comparing different models
on the bird image datasets, we will gain more expe-
rience in training some widely-adopted deep learn-
ing models and a deeper understanding of the chal-
lenging fine-grained classification task. We hope
our work could provide some insights for future
directions on improving the performance of bird
image classification tasks.

https://github.com/AnniLi1212/Fine_Grained_Bird_Classification.git
https://github.com/AnniLi1212/Fine_Grained_Bird_Classification.git
https://github.com/AnniLi1212/Fine_Grained_Bird_Classification.git


1.2 Related Work

Fine-grained visual classification (FGVC) is a sub-
field of computer vision focused on distinguishing
between highly similar object categories, often be-
longing to the same superclass, such as bird species,
car models, or dog breeds. The challenge in FGVC
lies in the subtle differences between categories,
which often require domain-specific knowledge
and expertise to differentiate. The breakthrough
of deep learning, particularly convolutional neural
networks (CNNs), has significantly improved the
performance of fine-grained classification. CNNs
are capable of learning hierarchical features from
raw images without the need for manual feature
engineering or part annotations [3]. Models such
as AlexNet, VGG, and ResNet have been employed
for FGVC tasks with great success [4].

The paper "Deep Residual Learning for Image
Recognition" by Kaiming He, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun introduced the Resid-
ual Network (ResNet) architecture, presenting a
novel approach to addressing the vanishing gradi-
ent problem in deep networks, enabling the train-
ing of very deep networks while maintaining high
performance. Its applications in fine-grained classi-
fication is also demonstrated.(He et al., 2016) The
pre-trained ResNet-50 model, trained on the Ima-
geNet dataset, can be fine-tuned on smaller datasets
for fine-grained classification tasks, achieving high
accuracy with less training data and time. Exam-
ples of successful applications include the CUB-
200-2011 bird species dataset, the Stanford Cars
dataset, and the Oxford Flowers dataset.(He et al.,
2016; Wah et al., 2011) In this project, we are go-
ing to compare the performance of three models
in fine-grained classification: the traditional CNN,
the CNN using masked image, and the pre-trained
ResNet-50 model.

2 Dataset

The dataset we chose comes from the Kag-
gle platform (https://www.kaggle.
com/datasets/veeralakrishna/
200-bird-species-with-11788-images?
resource=download) and is named Caltech-
UCSD Birds-200-2011. This dataset is an extended
version of the CUB-200 dataset and consists of 200
bird species with 11,788 images. In this dataset,
each image has 15 part locations, 312 binary
attributes, and 1 bounding box. These informations
are stored separately in txt files.

To process the data, we first unzip the .tgz for-
mat file which contains several important data files.
Once unzipped, we had several .txt files contain-
ing labels (bird species), image IDs, and training
flags (‘is_training‘). To prepare the dataset for
processing for our models, we read all the informa-
tion from these .txt files and stored them into sepa-
rate columns in a Pandas data frame. We split the
data based on the ‘is_train‘ column. Next, we de-
fine a Pytorch class called CUBdata that takes into
the Pandas data frame and a transformation object
transform. Under the class, we implemented two
functions ‘len‘ and ‘getitem‘. While ‘len‘ function
returns the number of samples in our data frame,
the ‘getitem‘ function returns the image that the ID
in the data frame corresponds to. The transform we
defined here first resized the image to 448x448 and
then converted it into a tensor. We then normalize
the image by calling the ‘normalize_image‘ func-
tion to obtain the normalized pixel values for each
image tensor. Following this data-cleaning process,
we fed our Pandas data frame into the CUBdata
and went through the transformation process, and
obtained the dataset used for training. For the pre-
trained ResNet50 model, we resized the images to
224x224 and did some random rotations and flips
on the images before converting them to vectors.

3 Methods

3.1 Models

3.1.1 Model 1
Mechanism: This model is a convolutional neural
network model that is trained on the full bird im-
ages.
Construction: We defined a batch size of 8 for
each DataLoder. Then we construct our CNN with
two convolutional layers, a max-pooling layer, and
a fully connected layer. We used ReLU as the ac-
tivation function in this basic neural network. For
the first layer, we defined it to take into a 3 channels
input and output 16 channels using a 3x3 kernel
with padding 1. Then we called our activation func-
tion ReLU and performed max-pooling of size 2x2
on the output. The result was then fed into the
second layer and outputted into 32 channels. The
ReLU function was called again and the same 2x2
max-pooling was performed on these features. Fi-
nally, the output of the layer was flattened into a
one-dimensional tensor and passed through a fully
connected layer with 32x112x112 input features
and 200 output features and underwent the activa-

https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images?resource=download
https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images?resource=download
https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images?resource=download
https://www.kaggle.com/datasets/veeralakrishna/200-bird-species-with-11788-images?resource=download


tion function. The result was returned as the final
output of the neural network.

3.1.2 Model 2
Mechanism: This model is a convolutional neu-
ral network model that is trained images which
only include bird bodies using the information from
parts.txt.
Construction: First, we masked out the back-
ground according to the outermost part points and
ignore one outermost point to prevent outlier points,
since the part points are marked manually. Then
we extracted the main body of the bird from the im-
age. For the masked image, we constructed a more
sophisticated three-layer neural network with batch
normalization, max pooling, two fully connected
layers, and dropout layers for regularization. The
first convolutional layer took a 3-channel input and
applied a 3x3 kernel with padding 1 and output to
16 channels. The output was then passed through
batch normalization and the leaky ReLU activation
function. The second layer took into the output of
the previous layer and applied a 3x3 kernel with
padding 1 and batch normalization and the leaky
ReLU again. The final layer was constructed using
the same logic but outputted 64 channels. After
the convolutional layers, the output was flattened
and passed through two fully-connected layers with
leaky ReLU and random dropout. Batch normal-
ization and dropout regularization were used to
prevent overfitting and improve generalization.

3.1.3 Model 3
Mechanism: This model uses the ResNet50
model that is pre-trained on the ImageNet
dataset[1], which contains more than one million
images across 1000 different classes. By leverag-
ing the knowledge gained from this pre-training,
the ResNet-50 model can be fine-tuned on smaller
datasets, such as the CUB-200-2011 dataset, to
achieve high accuracy with relatively less training
data and time.
Construction: The ResNet-50 model is a deep
convolutional neural network designed for image
classification tasks. The model is built on the
Residual Network (ResNet) architecture, which
employs residual connections to enable the training
of deeper networks. The structure of this model
can be divided into several parts:

Initial Convolutional Layer: The input image
passes through a 7x7 convolutional layer with 64
filters, stride of 2, and padding of 3. This is fol-

lowed by batch normalization and a ReLU activa-
tion function. The output feature maps are then
downsampled using a 3x3 max-pooling layer with
a stride of 2 and padding of 1.

Residual Blocks: The core of the ResNet-50 ar-
chitecture consists of 4 groups of residual blocks,
where each group contains a different number of
bottleneck blocks. A bottleneck block is a com-
position of three convolutional layers. First, a 1x1
convolutional layer is used to reduce the number
of channels followed by batch normalization and
a ReLU activation function. Next, a 3x3 convo-
lutional layer is applied to extract spatial features,
followed by batch normalization and a ReLU acti-
vation function. Finally, a 1x1 convolutional layer
is used to restore the number of channels and in-
crease them by a factor of 4 followed by batch
normalization.

The output of the final layer in each bottleneck
block is added to the input feature map (residual
connection) before passing through a ReLU acti-
vation function. After passing through the four
residual blocks, the output feature maps are passed
through an adaptive average pooling layer to re-
duce their spatial dimensions to 1x1. The resulting
feature maps are flattened into a 1D vector, which
is then passed through a fully connected layer to
produce the final class probabilities. The number
of output units in the fully connected layer corre-
sponds to the number of classes in the classification
task.

3.2 Training

We applied optuna for the first two models to select
the best hyperparameters. Since the process takes
too long, we set optuna to run 5 epochs with 6 tri-
als. The selected hyperparameters are then passed
into the model for training. Through manual prac-
tices, we found the cross entropy loss is the best
loss function and the SGD is better than Adam as
optimizers for the first two models, as Adam would
cause more severe over-fitting. The learning rate
and momentum are chosen by optuna. For model
1, lr=0.0036 and momentum=0.9129; for model 2,
lr = 0.0066 and momentum=0.6489.

During the training and validation loop, we ap-
plied an early stopping with patience=10 to prevent
the model from overfitting. If the validation loss
is larger than the best validation loss ten times, the
training process would stop. The model with the
least validation loss is then copied as the best model



to be tested on the test dataset.
For model 3, we did not use optuna to select best

hyperparameters, because it takes too long to fin-
ish. We finally chose cross-entropy loss as the loss
function and Adam as the optimizer with learning
rate=0.001 and weight decay=0.0001 to prevent
overfitting. We also set the validation patience to
10 to trigger the early stopping and copy the best
model to be tested on the test dataset.

3.3 Evaluation Metrics

We used metrics including loss, accuracy, preci-
sion, and recall to evaluate the performances of our
models as these dimensions are important in a bird
classification task. We used the cross-entropy loss
to calculate the loss for each model. The accuracy
was calculated by taking the portion of correct pre-
dictions among all the true labels. We also include
precision and recall in our metric because precision
represents the fraction of correctly identified bird
species out of all the bird species predicted by the
model and recall represents the fraction of correctly
identified bird species out of all the bird species in
the dataset. We included these two metrics in our
experiment as it provides a more comprehensive
review of the performances of the models.

4 Results

The results of our experiment and comparison in-
dicated that the ResNet50 was the most suitable
model for the fine-grained bird classification task.
Among the three models, it was the most effec-
tive model with a precision of 0.334, a recall of
0.290, and an accuracy of 28% on the test set after
77 epochs of training. The second most effective
model for the task in our experiment was Net_2
which only trained on masked bird images, with
a precision of 0.075, a recall of 0.070, and an ac-
curacy of 7%. We observed some improvement in
Net_2 when we removed the backgrounds from the
bird images for training with a more sophisticated
construction of the neural network. This improved
network outperformed our Net_1, which had a pre-
cision of 0.001, a recall of 0.014, and an accuracy
of 1% after 11 epochs on a general look. Over-
all, we observed the fastest reduction in the loss
function of the ResNet50 model, this finding re-
confirmed that ResNet50 was relatively effective in
performing fine-grained classification like this one.
The performance of each model could be found in
Table 1. The change of the loss function was shown

Model Accuracy Precision Recall
Net_1 1% 0.001 0.014
Net_2 7% 0.075 0.070
ResNet50 28% 0.334 0.290

Table 1: shows the performance for each model. Please
note that Net_1 was trained on 11 epochs, Net_2 was
trained on 17 epochs and ResNet50 was trained on 77
epochs. We observed an improved performance when
we add more complexity to the model.

Figure 1: Training loss curve and validation loss curve
on the training of Net_1.

in Graph 1, Graph 2, and Graph 3.

5 Limitation

We must acknowledge that we might have under-
estimated the complexity of the task and we failed
to discuss the feasibility of this project with the
instructor team while planning. Though bird classi-
fication is a widely-performed classification task,
it didn’t imply anything about the complexity and
hardware requirements of this task. It is also im-

Figure 2: Training loss curve and validation loss curve
on the training of Net_2.



Figure 3: Training loss curve and validation loss curve
on the training of ResNet50.

portant to note that the performances of all models
were greatly restricted to the GPUs that were ac-
cessible to us. We ran into huge difficulties while
training the dataset due to the heavy GPU require-
ments from all three models. Thus, the results we
obtained might not be an accurate representation
of the performance of the models as we could not
compare the performances of the models on the
same basis with the ResNet50 (77 epochs) being
relatively faster compared to our models (11 epochs
and 17 epochs respectively).

6 Future Direction

In the future, we hope to reconstruct the current
state-of-art models such as MetaFormer to ap-
proach such a fine-grained classification task. We
are interested in seeing a comparison between the
performances of these models. Other machine-
learning tasks related to bird classification are also
worth attempting, such as using audio to classify
birds. In summary, we believe that there is a need
for optimization of models that are suitable for fine-
grained classification to reduce the computational
powers so the models are more accessible to the
general public.

7 Conclusion

In this project, we constructed three CNN models
using different strategies to perform fine-grained
classification on the CUB-200-2011 dataset to dis-
tinguish different bird species images. We com-
pared the performance of 1. traditional CNN, 2.
CNN using masked images, and 3. Pre-trained
ResNet-50 model on this task, and found that the
CNN using masked images indeed has an improve-
ment in accuracy, precision, and recall compared to

traditional CNN. The model that performs the best
is the pre-trained ResNet-50 model, which reaches
28% accuracy on test images with precision=0.334
and recall=0.290. From this project, we found that
traditional CNNs with simple structure could not
do fine-grained classification well, because their
ability to effectively extract important features is
limited.

8 Contribution

Both authors actively collaborated and communi-
cated throughout the project:
Anni Li: Data processing, models construction,
training, final report
Ruoxuan Li: Project initiation, validation, metrics,
final report, presentation slides

References
[1] He, K., Zhang, X., Ren, S., Sun, J. (2015).

Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385.

[2] Wah, C., Branson, S., Welinder, P., Perona, P.,
Belongie, S. (2011). The Caltech-UCSD Birds-
200-2011 Dataset. California Institute of Technol-
ogy. http://www.vision.caltech.edu/visipedia/CUB-
200-2011.html.

[3] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems (pp. 1097-1105).

[4] Simonyan, K., Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.


