UC San Diego

Anni Li, Venkat Krishnamohan, Raghav Kansal, Rounak Sen, Steven Tsan, Zhaoyu Zhang, Javier Duarte

Summary

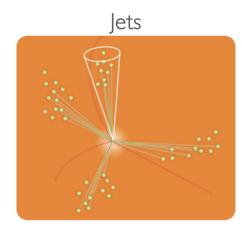
- We present the induced generative adversarial particle transformer (iGAPT) for jet simulation.
- Physics-informed inductive biases, conditioning on global jet features, and induced attention mechanism achieves high-fidelity, demonstrating competitive performance with SOTA models on simulating 30-particle jets.
- Significantly better **computational efficiency** and **time complexity**.
- Exhibits strong potential to simulate larger numbers of particles, being able to simulate 150-particle jets, which is not achievable using previous model (MPGAN).

Machine Learning for CERN LHC Simulations

- In high energy physics (HEP), jets generated by particle collisions at the Large Hadron Collider (LHC) helps the understanding of particle properties and identification of rare particles.
- ML models have advantages in simulating these collisions. The message-passing GAN (MPGAN) made significant strides by using graph neural networks to handle variable-sized particle clouds, but has quadratic time complexity.
- Generative Adversarial Particle Transformer (GAPT) improved the efficiency using self-attention blocks, but could not match MPGAN's performance.

Dataset: JetNet

- Includes simulated high transverse-momentum (p^T) jets from various sources like gluons, light quarks, and top quarks.
- Each jet is represented as a point cloud of its constituent particles, characterized by three features: relative angular coordinates (η^{rel} , φ^{rel}), and transverse-momentum (p^{T}).
 - Gluon: Baseline generation test
 - Light quarks: Fewer particles; variable-sized clouds test
 - Top quark: Complex topology



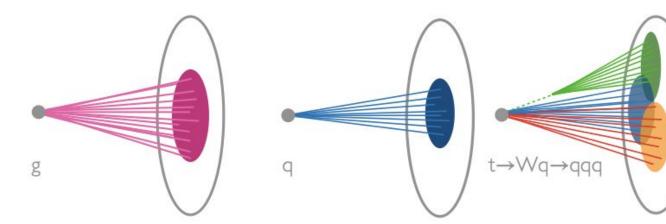
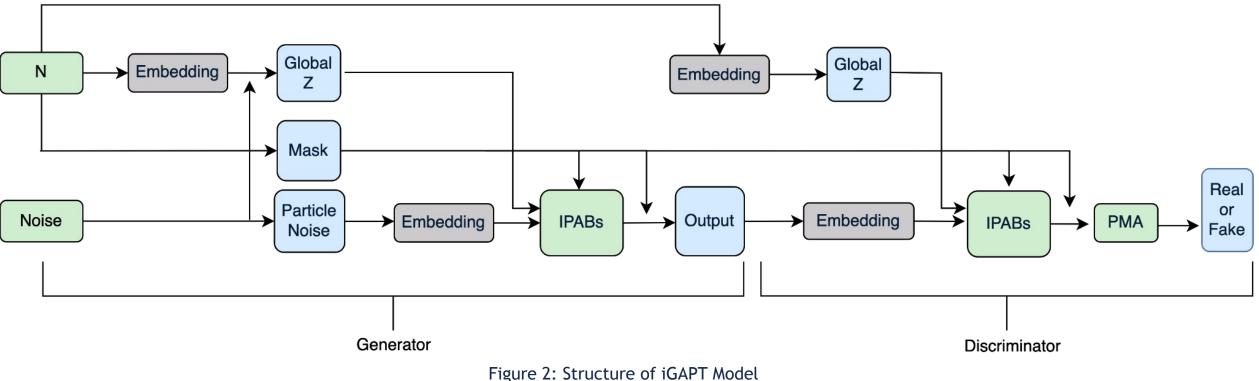


Figure 1: Jets (left) and JetNet (right)

The key ideas in iGAPT:



Evaluation

Timing Measurements

Induced Generative Adversarial Particle Transformers

Induced Generative Adversarial Particle Transformers (iGAPT)

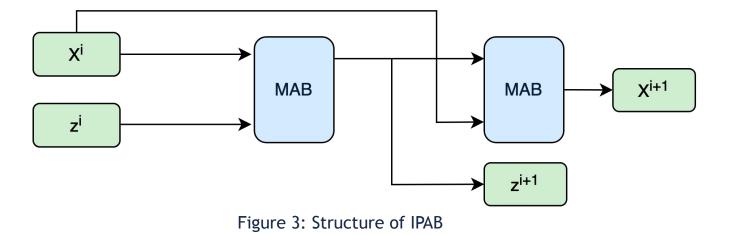
• Particle cloud representations effectively represent sparsity and permutation symmetry of jets • Induced set attention blocks offers linear scaling with number of particles.

• Learning global jet features through induced particle attention blocks (IPABs)

• Global z: A global conditioning vector learnt and maintained through the generation and discrimination to implicitly represent global jet features.

• **PMA:** Pooling by Multihead Attention layer that aggregates the intermediate representation in a permutation-invariant way.

• **IPABs:** Induced Particle Attention Blocks. The global vector z is used as the **inducing vector** to attend the input, outputting an compressed representation. z is **continuously updated** through the attention outputs, allowing the update and learning of global jet features and individual particle features interactively in each attention layer.



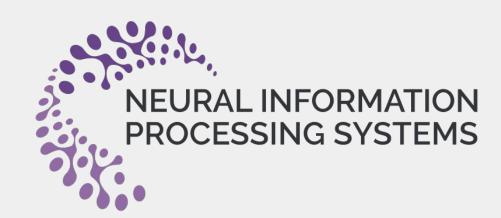
• We evaluate the performance by Fréchet physics distance (FPD), kernel physics distance (KPD), and 1-Wasserstein distances (W₁) between individual particle and jet features

• Sensitive metrics to comprehensively evaluate generative HEP model performance.

• Also includes visual comparison of feature distributions between the real and generated samples.

• The table below shows the training time and inference time for **30-particle gluon** measured on an NVIDIA 1080 GPU.

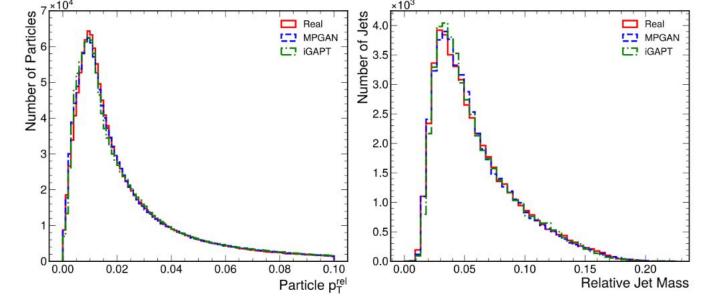
Model	Training time	Generation time	Batch size
MPGAN	193 (s/epoch)	142 (µs / jet)	512
iGAPT	31 (s/epoch)	40 (µs / jet)	4096



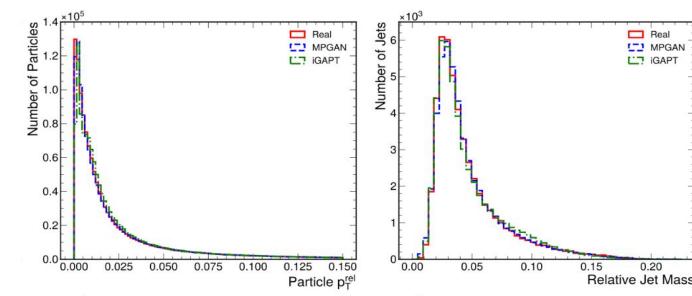
Real

Results

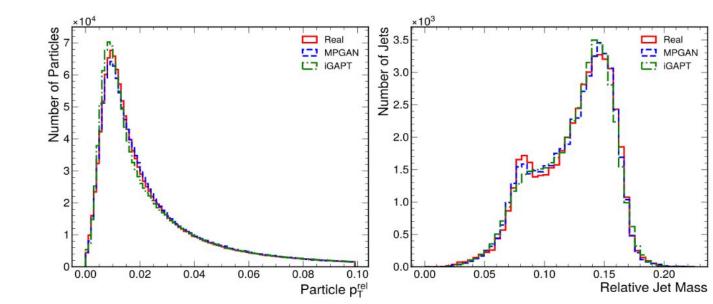
• Particle feature distributions for **30-particle gluon**:



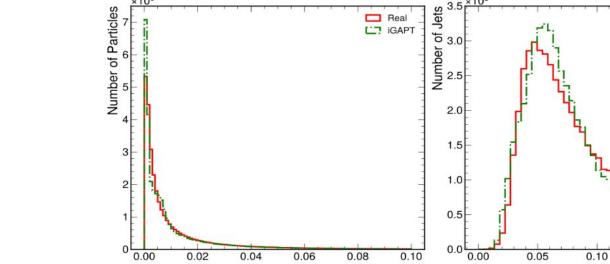
• Particle feature distributions for **30-particle light quark**:

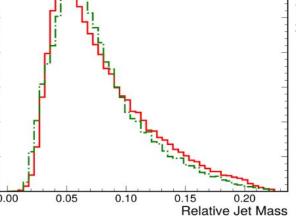


• Particle feature distributions for **30-particle top quark jets**:



• Particle feature distributions for **150-particle gluon** (MPGAN was unable to simulate due to high computational complexity):





Real

• Evaluation metrics for different and models on **30-particle gluon**

Particle prei

Model	$W_1^{p}(10^{-3})$	W _ ^M (10 ⁻³)	FPD (10 ⁻³)	KPD (10 ⁻⁶)
Truth	0.14 ± 0.06	0.46 ± 0.08	0.14 ± 0.04	1.8 ± 11.9
MPGAN	0.27 ± 0.02	0.7 ± 0.3	0.41 ± 0.09	0 ± 8
GAPT	0.25 ± 0.07	1.0 ± 0.2	0.46 ± 0.06	5 ± 3
iGAPT	0.76 ± 0.07	0.7 ± 0.1	0.29 ± 0.04	3 ± 5