LMUFormer: Low Complexity Yet Powerful **Spiking Model With Legendre Memory Units**

^{1,*}Zeyu Liu, ^{1,2,*}Gourav Datta, ¹Anni Li, ¹Peter A. Beerel ¹University of Southern California ²Currently employed at Amazon Inc. *Equally contributing authors

Motivation

Transformers X

Attention(Q, K, V) = $softmax\left(\frac{QK^T}{\sqrt{d_L}}\right)V$

- Quadratic computational and memory complexities w.r.t. sequence length N.
- Global self-attention mechanism needs to process the entire sequence, which yields high latency for real-time streaming applications.
- Stateless

LMUFormer

Structure

- Can process data in real time during inference.
- Can be trained in **parallel**.
- Smaller model size and FLOPs, fewer parameters.
- **SOTA performance** within the realm of SNN models on the Speech Commands dataset.

ICLR

School of Engineering Ming Hsieh Department of Electrical and Computer Engineering

Experiments

Accuracy

Speech Commands V2 Dataset:

Model	Sequential Inference	Parallel Training	SNN	Accuracy (%)
RNN (Bittar & Garner, 2022)	Yes	No	No	92.09
Attention RNN (De Andrade et al., 2018)	No	No	No	93.9
liBRU (Bittar & Garner, 2022)	Yes	No	No	95.06
Res15 (Vygon & Mikhaylovskiy, 2021)	Yes	Yes	No	97.00
KWT2 (Berg et al., 2021)	No	Yes	No	97.74
AST (Gong et al., 2021)	No	Yes	No	98.11
LIF (Bittar & Garner, 2022)	Yes	Yes	Yes	83.03
SFA (Salaj et al., 2021)	Yes	No	Yes	91.21
Spikformer [*] (Zhou et al., 2022)	No	Yes	Yes	93.38
RadLIF (Bittar & Garner, 2022)	Yes	No	Yes	94.51
Spike-driven ViT* (Yao et al., 2023)	No	Yes	Yes	94.85
LMUFormer	Yes	Yes	No	96.53
LMUFormer (with states)	Yes	Yes	No	96.92
Spiking LMUFormer	Yes	Yes	Yes	96.12
Reduction in # of Params. : Model Parama (M) OPa (C)				

RNN 🗙

- **Higher training time** because training must accommodate the long sequence of dependencies within the model, making parallelization more difficult.
- Traditionally suffer from **forgetting** due to having a limited memory horizon.

Background

Legendre Memory Unit (LMU)^[1]

- A memory cell that efficiently captures and represent temporal dependencies in sequential data.
- Utilizes the mathematical properties of Legendre polynomials.
- Based on two state-space matrices (A, B) that approximate a linear transfer function in continuous time / discrete time:

 $\dot{\boldsymbol{m}}(t) = \boldsymbol{A}\boldsymbol{m}(t) + \boldsymbol{B}\boldsymbol{u}(t)$ $\boldsymbol{m}[t] = \overline{A}\boldsymbol{m}[t-1] + \overline{B}\boldsymbol{u}[t]$

• To enable **parallelization**, we get u[t] and

Spiking LMUFormer

1. Convolutional Patch Embedding

- Apply Conv1d on time dimension: adds negligible delay, but enhances performance significantly.
- Latency analysis:
- 1. To get the 1st output of the 1st Conv layer we need to wait for **3** input samples.
- 2. To get the 1st output of the patch embedding we need to wait 8 extra input samples.
- 3. After **8** input samples, we can operate on the inputs sequentially.

2. LMU Block (RNN format)

$86.93 \div 1.62 pprox 53.66$	AST (Gong et al., 2021)	86.93	12.4
Reduction in FLOPS:	LMUFormer	1.62	0.189
$12.4 \pm 0.189 \approx 65.61$	Spiking LMUFormer	1.69	0.0309
$12.7.0.107 \sim 02.01$			

Our models achieve **SOTA accuracy** in SNN domain and achieve comparable performance to AST^[4] with a significantly reduced **number of** parameters and lower FLOPS.

LRA (Long Range Arena) benchmark:

Model	ListOps (2K)	Text(4K)	Retrieval (4K)	Image(1K)	Pathfinder (1K)	Avg
S4	58.35	76.02	87.09	87.26	86.05	80.48
Linear Trans.	16.13	65.90	53.09	42.34	75.30	50.55
Linformer	35.70	53.94	52.27	38.56	76.34	51.36
Transformer	36.37	64.27	57.46	42.44	71.40	54.39
BigBird	36.05	64.02	59.29	40.83	74.87	55.01
Nystromformer	37.15	65.52	79.56	41.58	70.94	58.95
LMUFormer	34.43	68.27	78.65	54.16	69.9	61.08
Spiking LMUFormer	37.30	65.80	79.76	55.65	72.68	62.24

Energy-Efficiency

We evaluated the trained spiking LMUFormer on the Speech Command V2 test dataset, gradually increasing the sequence length from 0 to its full length of 128 samples:

output of LMU as follows^[2] to make the module a linear time-invariant (LTI) system:

 $\boldsymbol{u}[t] = Act_{\boldsymbol{u}} \left(\boldsymbol{W}_{\boldsymbol{u}} \boldsymbol{x}[t] + \boldsymbol{b}_{\boldsymbol{u}} \right)$ $\boldsymbol{o}[t] = Act_o \left(\boldsymbol{W}_m \boldsymbol{m}[t] + \boldsymbol{W}_x \boldsymbol{x}[t] + \boldsymbol{b}_o \right)$

Spiking Neural Network (SNN)

- Uses binary "spikes" to process and transmit information.
- We use Leaky Integrate-and-Fire (LIF) ^[3] neurons to get the membrane potentials:

 $u_{l}^{t} = \lambda u_{l}^{t-1} + w_{l}o_{l-1}^{t} - v_{l}^{th}o_{l-1}^{t-1}$ $\boldsymbol{o}_l^{t-1} = \begin{cases} 1, & \text{if } \boldsymbol{u}_l^{t-1} \ge v_l^{th} \\ 0, & otherwise \end{cases}$

 \boldsymbol{u}_{l}^{t} : Membrane potential tensor of l^{th} layer at t^{th} time step λ : Leak factor between [0, 1] w_l : The weight connecting layers l-1 and l o_{l-1}^{t} : Spike output of $(l-1)^{\text{th}}$ layer at t^{th} time step v_l^{th} : Constant threshold for layer l

t : The time step t & sample index t $X_{S}[t]$: Input spikes at time step t U[t]: Input signal of the LMU memory cell $U_{S}[t]$: Firing of the spikes of U[t]M[t]: Memory vector at time step t $M_{S}[t]$: Firing of the spikes of M[t]

3. Conv Channel Mixer

- Left: Non-Spiking
- Right: Spiking

Key Innovation

Merge SNN time step with the LMUFormer index, avoiding the need for an extra time dimension and enabling an efficient spiking architecture.

	-
Ļ	Ļ
BN1d	BN1d
GELU	SN
Conv1d	Conv1d
BN1d	BN1d
ReLU	SN
Conv1d	Conv1d

Sequence

Spiking LMUFormer achieves **99%** (95.17% / 96.12%) of its original performance, while getting a **32.03%** (1 - 87/128) reduction in the sequence length!

References

Paper: Zeyu Liu, , Gourav Datta, Anni Li, Peter Anthony Beerel. "LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units." The Twelfth International Conference on Learning Representations. 2024.

Code: https://github.com/zeyuliu1037/LMUFormer

[1] Aaron Voelker, Ivana Kajic, and Chris Eliasmith. Legendre memory units: Continuous time representation in recurrent neural networks. Advances in neural information processing systems, 32, 2019.

[2] Narsimha Reddy Chilkuri and Chris Eliasmith. Parallelizing legendre memory unit training. In International Conference on Machine Learning, pp. 1898–1907. PMLR, 2021.

[3] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural networks, 10(9):1659–1671, 1997.

[4] Yuan Gong, et al. AST: Audio spectrogram transformer. arXiv preprint arXiv:2104.01778, 2021.